If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2-24x-24=0
a = 48; b = -24; c = -24;
Δ = b2-4ac
Δ = -242-4·48·(-24)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-72}{2*48}=\frac{-48}{96} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+72}{2*48}=\frac{96}{96} =1 $
| X=100-10x | | 6(5-t)=48 | | 4a+5/5=7 | | .33(9x+42)-5x=-70 | | 17(-2u-3)-2=-19 | | -17(-2u-3)-2=-19 | | M-9+6m=30 | | 0.2x+1.5=0.25x-0.1 | | ∑20n=5(14n+29) | | –4|7j|=0 | | 3p10+9=21 | | 1750x=1250 | | 5a-7=3a+4 | | 130+0.40m=50+0.50m | | 3=−2∣1—4s−5∣+3 | | 6x6=3x(…) | | 1b/7+1/8=19 | | 15(z+6)=−15(z−18) | | 6x6=3x | | 12+3k=2k+15 | | 6(y+1)-4=-10 | | (4x+1)=(6x+1) | | 6(6y+1)-4=-10 | | 6j+-7=9j-25 | | 3k-24=-9k | | 2p+19+p-3=4 | | 9j-37=4j+-2 | | 8x-(x+12)=1 | | 2x/7-5=8 | | 36+5j=-4j | | -2x^2-13x-38=0 | | (5a-18)-4a=-36 |